Saturday, September 28, 2019

SQOOP Expert

Sqoop:
Import and export from/to RDBMS and Mainframe.
sqoop-list-databases
sqoop-list-tables
sqoop-eval
sqoop help

$ sqoop help
usage: sqoop COMMAND [ARGS]
Available commands:
  codegen            Generate code to interact with database records
  create-hive-table  Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables  Import tables from a database to HDFS
  import-mainframe   Import mainframe datasets to HDFS
  list-databases     List available databases on a server
  list-tables        List available tables in a database
  version            Display version information

See 'sqoop help COMMAND' for information on a specific command.
sqoop-import sqoop-export

$ sqoop help import
usage: sqoop import [GENERIC-ARGS] [TOOL-ARGS]
Common arguments:
   --connect      Specify JDBC connect string
   --connect-manager      Specify connection manager class to use
   --driver     Manually specify JDBC driver class to use
   --hadoop-mapred-home









      Override $HADOOP_MAPRED_HOME
   --help                   Print usage instructions
   --password-file          Set path for file containing authentication password
   -P                       Read password from console
   --password     Set authentication password
   --username     Set authentication username
   --verbose                Print more information while working
   --hadoop-home      Deprecated. Override $HADOOP_HOME

[...]

Generic Hadoop command-line arguments:
(must preceed any tool-specific arguments)
Generic options supported are
-conf      specify an application configuration file
-D             use value for given property
-fs       specify a namenode
-jt     specify a job tracker
-files     specify comma separated files to be copied to the map reduce cluster
-libjars     specify comma separated jar files to include in the classpath.
-archives     specify comma separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

--options-file
$ sqoop import --connect jdbc:mysql://localhost/db --username foo --table TEST
$ sqoop --options-file /users/homer/work/import.txt --table TEST
where the options file /users/homer/work/import.txt contains the following:
import
--connect
jdbc:mysql://localhost/db
--username
foo

Table 1. Common arguments
Argument Description
--connect Specify JDBC connect string
--connection-manager Specify connection manager class to use
--driver Manually specify JDBC driver class to use
--hadoop-mapred-home







Override $HADOOP_MAPRED_HOME
--help Print usage instructions
--password-file Set path for a file containing the authentication password
-P Read password from console
--password Set authentication password
--username Set authentication username
--verbose Print more information while working
--connection-param-file Optional properties file that provides connection parameters
--relaxed-isolation Set connection transaction isolation to read uncommitted for the mappers.

sqoop import --connect jdbc:mysql://database.example.com/employees
 $ sqoop import --connect jdbc:mysql://database.example.com/employees \
    --username venkatesh --password-file ${user.home}/.password

echo -n "secret" > password.file.


Table 2. Validation arguments More Details
Argument Description
--validate Enable validation of data copied, supports single table copy only.
--validator Specify validator class to use.
--validation-threshold Specify validation threshold class to use.
--validation-failurehandler Specify validation failure handler class to use.


Table 3. Import control arguments:



Argument Description
--append Append data to an existing dataset in HDFS
--as-avrodatafile Imports data to Avro Data Files
--as-sequencefile Imports data to SequenceFiles
--as-textfile Imports data as plain text (default)
--as-parquetfile Imports data to Parquet Files
--boundary-query Boundary query to use for creating splits
--columns
Columns to import from table
--delete-target-dir Delete the import target directory if it exists
--direct Use direct connector if exists for the database
--fetch-size Number of entries to read from database at once.
--inline-lob-limit Set the maximum size for an inline LOB
-m,--num-mappers Use n map tasks to import in parallel
-e,--query Import the results of statement.
--split-by Column of the table used to split work units. Cannot be used with --autoreset-to-one-mapper option.
--autoreset-to-one-mapper Import should use one mapper if a table has no primary key and no split-by column is provided. Cannot be used with --split-by
--table Table to read
--target-dir







HDFS destination dir
--warehouse-dir







HDFS parent for table destination
--where WHERE clause to use during import
-z,--compress Enable compression
--compression-codec Use Hadoop codec (default gzip)
--null-string The string to be written for a null value for string columns
--null-non-string The string to be written for a null value for non-string columns


The --null-string and --null-non-string arguments are optional.\ If not specified, then the string "null" will be used.
$ sqoop import \
  --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' \
  --split-by a.id --target-dir /user/foo/joinresults $ sqoop import \
  --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' \
  -m 1 --target-dir /user/foo/joinresults

Note
If you are issuing the query wrapped with double quotes ("), you will have to use \$CONDITIONS instead of just $CONDITIONS to disallow your shell from treating it as a shell variable. For example, a double quoted query may look like: "SELECT * FROM x WHERE a='foo' AND \$CONDITIONS"
The option --autoreset-to-one-mapper is typically used with the import-all-tables tool to automatically handle tables without a primary key in a schema.

--skip-dist-cache

Argument Description
--map-column-java Override mapping from SQL to Java type for configured columns.
--map-column-hive Override mapping from SQL to Hive type for configured columns.


Sqoop is expecting comma separated list of mapping in form =. For example:

$ sqoop import ... --map-column-java id=String,value=Integer

Table 5. Incremental import arguments:
Argument Description
--check-column (col) Specifies the column to be examined when determining which rows to import. (the column should not be of type CHAR/NCHAR/VARCHAR/VARNCHAR/ LONGVARCHAR/LONGNVARCHAR)
--incremental (mode) Specifies how Sqoop determines which rows are new. Legal values for mode include append and lastmodified.
--last-value (value) Specifies the maximum value of the check column from the previous import.

--as-textfile
You can compress your data by using the deflate (gzip) algorithm with the -z or --compress argument, or specify any Hadoop compression codec using the --compression-codec argument. This applies to SequenceFile, text, and Avro files.

 Output line formatting arguments:
Argument Description
--enclosed-by Sets a required field enclosing character
--escaped-by Sets the escape character
--fields-terminated-by Sets the field separator character
--lines-terminated-by Sets the end-of-line character
--mysql-delimiters Uses MySQL’s default delimiter set: fields: , lines: \n escaped-by: \ optionally-enclosed-by: '
--optionally-enclosed-by Sets a field enclosing character


 Hive arguments:
Argument Description
--hive-home






Override $HIVE_HOME
--hive-import Import tables into Hive (Uses Hive’s default delimiters if none are set.)
--hive-overwrite Overwrite existing data in the Hive table.
--create-hive-table If set, then the job will fail if the target hive
table exits. By default this property is false.
--hive-table Sets the table name to use when importing to Hive.
--hive-drop-import-delims Drops \n, \r, and \01 from string fields when importing to Hive.
--hive-delims-replacement Replace \n, \r, and \01 from string fields with user defined string when importing to Hive.
--hive-partition-key Name of a hive field to partition are sharded on
--hive-partition-value String-value that serves as partition key for this imported into hive in this job.
--map-column-hive Override default mapping from SQL type to Hive type for configured columns.

--hive-import--hive-overwrite
sqoop import  ... --null-string '\\N' --null-non-string '\\N'



Argument Description
--column-family Sets the target column family for the import
--hbase-create-table If specified, create missing HBase tables
--hbase-row-key
Specifies which input column to use as the row key
In case, if input table contains composite
key, then
comma-separated list of composite key
attributes
--hbase-table Specifies an HBase table to use as the target instead of HDFS
--hbase-bulkload Enables bulk loading

Table 10. Accumulo arguments:

Argument Description
--accumulo-table Specifies an Accumulo table to use as the target instead of HDFS
--accumulo-column-family Sets the target column family for the import
--accumulo-create-table If specified, create missing Accumulo tables
--accumulo-row-key
Specifies which input column to use as the row key
--accumulo-visibility (Optional) Specifies a visibility token to apply to all rows inserted into Accumulo. Default is the empty string.
--accumulo-batch-size (Optional) Sets the size in bytes of Accumulo’s write buffer. Default is 4MB.
--accumulo-max-latency (Optional) Sets the max latency in milliseconds for the Accumulo batch writer. Default is 0.
--accumulo-zookeepers Comma-separated list of Zookeeper servers used by the Accumulo instance
--accumulo-instance Name of the target Accumulo instance
--accumulo-user Name of the Accumulo user to import as
--accumulo-password Password for the Accumulo user

Argument Description
--bindir





Output directory for compiled objects
--class-name Sets the generated class name. This overrides --package-name. When combined with --jar-file, sets the input class.
--jar-file Disable code generation; use specified jar
--outdir





Output directory for generated code
--package-name Put auto-generated classes in this package
--map-column-java Override default mapping from SQL type to Java type for configured columns.

$ sqoop import --connect --table SomeTable --package-name com.foocorp $ sqoop import --table SomeTable --jar-file mydatatypes.jar \
    --class-name SomeTableType sqoop import -D property.name=property.value …
A basic import of a table named EMPLOYEES in the corp database:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES
A basic import requiring a login:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --username SomeUser -P
Enter password: (hidden)
Selecting specific columns from the EMPLOYEES table:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --columns "employee_id,first_name,last_name,job_title"
Controlling the import parallelism (using 8 parallel tasks):
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    -m 8
Storing data in SequenceFiles, and setting the generated class name to com.foocorp.Employee:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --class-name com.foocorp.Employee --as-sequencefile
Specifying the delimiters to use in a text-mode import:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --fields-terminated-by '\t' --lines-terminated-by '\n' \
    --optionally-enclosed-by '\"'
Importing the data to Hive:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --hive-import
Importing only new employees:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --where "start_date > '2010-01-01'"
Changing the splitting column from the default:
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --split-by dept_id
Verifying that an import was successful:
$ hadoop fs -ls EMPLOYEES
Found 5 items
drwxr-xr-x   - someuser somegrp          0 2010-04-27 16:40 /user/someuser/EMPLOYEES/_logs
-rw-r--r--   1 someuser somegrp    2913511 2010-04-27 16:40 /user/someuser/EMPLOYEES/part-m-00000
-rw-r--r--   1 someuser somegrp    1683938 2010-04-27 16:40 /user/someuser/EMPLOYEES/part-m-00001
-rw-r--r--   1 someuser somegrp    7245839 2010-04-27 16:40 /user/someuser/EMPLOYEES/part-m-00002
-rw-r--r--   1 someuser somegrp    7842523 2010-04-27 16:40 /user/someuser/EMPLOYEES/part-m-00003

$ hadoop fs -cat EMPLOYEES/part-m-00000 | head -n 10
0,joe,smith,engineering
1,jane,doe,marketing
...
Performing an incremental import of new data, after having already imported the first 100,000 rows of a table:
$ sqoop import --connect jdbc:mysql://db.foo.com/somedb --table sometable \
    --where "id > 100000" --target-dir /incremental_dataset --append
An import of a table named EMPLOYEES in the corp database that uses validation to validate the import using the table row count and number of rows copied into HDFS: More Details
$ sqoop import --connect jdbc:mysql://db.foo.com/corp \
    --table EMPLOYEES --validate
$ sqoop import-all-tables (generic-args) (import-args)
$ sqoop-import-all-tables (generic-args) (import-args)
Table 13. Common arguments
Argument Description
--connect Specify JDBC connect string
--connection-manager Specify connection manager class to use
--driver Manually specify JDBC driver class to use
--hadoop-mapred-home





Override $HADOOP_MAPRED_HOME
--help Print usage instructions
--password-file Set path for a file containing the authentication password
-P Read password from console
--password Set authentication password
--username Set authentication username
--verbose Print more information while working
--connection-param-file Optional properties file that provides connection parameters
--relaxed-isolation Set connection transaction isolation to read uncommitted for the mappers.

Table 14. Import control arguments:
Argument Description
--as-avrodatafile Imports data to Avro Data Files
--as-sequencefile Imports data to SequenceFiles
--as-textfile Imports data as plain text (default)
--as-parquetfile Imports data to Parquet Files
--direct Use direct import fast path
--inline-lob-limit Set the maximum size for an inline LOB
-m,--num-mappers Use n map tasks to import in parallel
--warehouse-dir





HDFS parent for table destination
-z,--compress Enable compression
--compression-codec Use Hadoop codec (default gzip)
--exclude-tables Comma separated list of tables to exclude from import process
--autoreset-to-one-mapper Import should use one mapper if a table with no primary key is encountered

--enclosed-by Sets a required field enclosing character
--escaped-by Sets the escape character
--fields-terminated-by Sets the field separator character
--lines-terminated-by Sets the end-of-line character
--mysql-delimiters Uses MySQL’s default delimiter set: fields: , lines: \n escaped-by: \ optionally-enclosed-by: '
--optionally-enclosed-by Sets a field enclosing character

Table 16. Input parsing arguments:
Argument Description
--input-enclosed-by Sets a required field encloser
--input-escaped-by Sets the input escape character
--input-fields-terminated-by Sets the input field separator
--input-lines-terminated-by Sets the input end-of-line character
--input-optionally-enclosed-by Sets a field enclosing character

Table 17. Hive arguments:
Argument Description
--hive-home





Override $HIVE_HOME
--hive-import Import tables into Hive (Uses Hive’s default delimiters if none are set.)
--hive-overwrite Overwrite existing data in the Hive table.
--create-hive-table If set, then the job will fail if the target hive
table exits. By default this property is false.
--hive-table Sets the table name to use when importing to Hive.
--hive-drop-import-delims Drops \n, \r, and \01 from string fields when importing to Hive.
--hive-delims-replacement Replace \n, \r, and \01 from string fields with user defined string when importing to Hive.
--hive-partition-key Name of a hive field to partition are sharded on
--hive-partition-value String-value that serves as partition key for this imported into hive in this job.
--map-column-hive Override default mapping from SQL type to Hive type for configured columns.

Table 18. Code generation arguments:
Argument Description
--bindir





Output directory for compiled objects
--jar-file Disable code generation; use specified jar
--outdir





Output directory for generated code
--package-name Put auto-generated classes in this package

Import all tables from the corp database:
$ sqoop import-all-tables --connect jdbc:mysql://db.foo.com/corp
Verifying that it worked:
$ hadoop fs -ls
Found 4 items
drwxr-xr-x   - someuser somegrp       0 2010-04-27 17:15 /user/someuser/EMPLOYEES
drwxr-xr-x   - someuser somegrp       0 2010-04-27 17:15 /user/someuser/PAYCHECKS
drwxr-xr-x   - someuser somegrp       0 2010-04-27 17:15 /user/someuser/DEPARTMENTS
drwxr-xr-x   - someuser somegrp       0 2010-04-27 17:15 /user/someuser/OFFICE_SUPPLIES

$ sqoop import-mainframe --connect z390 \
    --username david --password-file ${user.home}/.password

$ sqoop import-mainframe --connnect --dataset foo --warehouse-dir /shared \
    … $ sqoop import-mainframe --connnect --dataset foo --target-dir /dest \ sqoop import  ... --null-string '\\N' --null-non-string '\\N

$ sqoop import-mainframe --connect --dataset SomePDS --package-name com.foocorp $ sqoop import-mainframe --connect --dataset SomePDS --package-name com.foocorp $ sqoop import-mainframe --connect --dataset SomePDS --package-name com.foocorp $ sqoop import-mainframe --connect z390 --dataset EMPLOYEES \
    --hive-import

$ sqoop export (generic-args) (export-args)
$ sqoop-export (generic-args) (export-args)


 Export control arguments:

Argument Description
--columns
Columns to export to table
--direct Use direct export fast path
--export-dir




HDFS source path for the export
-m,--num-mappers Use n map tasks to export in parallel
--table Table to populate
--call Stored Procedure to call
--update-key Anchor column to use for updates. Use a comma separated list of columns if there are more than one column.
--update-mode Specify how updates are performed when new rows are found with non-matching keys in database.
Legal values for mode include updateonly (default) and allowinsert.
--input-null-string The string to be interpreted as null for string columns
--input-null-non-string The string to be interpreted as null for non-string columns
--staging-table The table in which data will be staged before being inserted into the destination table.
--clear-staging-table Indicates that any data present in the staging table can be deleted.
--batch Use batch mode for underlying statement execution.

CREATE TABLE foo(
    id INT NOT NULL PRIMARY KEY,
    msg VARCHAR(32),
    bar INT);
0,this is a test,42
1,some more data,100
Running sqoop-export --table foo --update-key id --export-dir /path/to/data --connect …

Input parsing arguments:
Argument Description
--input-enclosed-by Sets a required field encloser
--input-escaped-by Sets the input escape character
--input-fields-terminated-by Sets the input field separator
--input-lines-terminated-by Sets the input end-of-line character
--input-optionally-enclosed-by Sets a field enclosing character

Failed Exports

Exports may fail for a number of reasons:
  • Loss of connectivity from the Hadoop cluster to the database (either due to hardware fault, or server software crashes)
  • Attempting to INSERT a row which violates a consistency constraint (for example, inserting a duplicate primary key value)
  • Attempting to parse an incomplete or malformed record from the HDFS source data
  • Attempting to parse records using incorrect delimiters
  • Capacity issues (such as insufficient RAM or disk space)

 sqoop export --connect jdbc:mysql://db.example.com/foo --table bar  \
    --export-dir /results/bar_data --validate $ sqoop export --connect jdbc:mysql://db.example.com/foo --call barproc \
    --export-dir /results/bar_da ValidationThreshold - Determines if the error margin between the source and target are acceptable: Absolute, Percentage Tolerant, etc. Default

ValidationFailureHandler - Responsible for handling failures: log an error/warning, abort, etc. Default implementation is LogOnFailureHandler that logs a warning message to the configured logger.

Validator - Drives the validation logic by delegating the decision to ValidationThreshold and delegating failure handling to ValidationFailureHandler. The default implementation is RowCountValidator which validates the row counts from source and the target.


Validator. 
Property:         validator
Description:      Driver for validation,
                  must implement org.apache.sqoop.validation.Validator
Supported values: The value has to be a fully qualified class name.
Default value:    org.apache.sqoop.validation.RowCountValidator
Validation Threshold. 
Property:         validation-threshold
Description:      Drives the decision based on the validation meeting the
                  threshold or not. Must implement
                  org.apache.sqoop.validation.ValidationThreshold
Supported values: The value has to be a fully qualified class name.
Default value:    org.apache.sqoop.validation.AbsoluteValidationThreshold
Validation Failure Handler. 
Property:         validation-failurehandler
Description:      Responsible for handling failures, must implement
                  org.apache.sqoop.validation.ValidationFailureHandler
Supported values: The value has to be a fully qualified class name.
Default value:    org.apache.sqoop.validation.AbortOnFailureHandler
$ sqoop import --connect jdbc:mysql://db.foo.com/corp  \
    --table EMPLOYEES --validate $ sqoop export --connect jdbc:mysql://db.example.com/foo --table bar  \
    --export-dir /results/bar_data --validate sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
    --validate --validator org.apache.sqoop.validation.RowCountValidator \
    --validation-threshold \
          org.apache.sqoop.validation.AbsoluteValidationThreshold \
    --validation-failurehandler \
          org.apache.sqoop.validation.AbortOnFailureHandler $ sqoop job (generic-args) (job-args) [-- [subtool-name] (subtool-args)]
$ sqoop-job (generic-args) (job-args) [-- [subtool-name] (subtool-args)]

Job management options:

Argument Description
--create Define a new saved job with the specified job-id (name). A second Sqoop command-line, separated by a -- should be specified; this defines the saved job.
--delete Delete a saved job.
--exec Given a job defined with --create, run the saved job.
--show Show the parameters for a saved job.
--list List all saved jobs
$ sqoop job --create myjob -- import --connect jdbc:mysql://example.com/db \
    --table mytable sqoop job --list
Available jobs:
  myjob sqoop job --show myjob
Job: myjob
Tool: import
Options:
----------------------------
direct.import = false
codegen.input.delimiters.record = 0
hdfs.append.dir = false
db.table = mytable
sqoop job --exec myjob
10/08/19 13:08:45 INFO tool.CodeGenTool: Beginning code generation

The exec action allows you to override arguments of the saved job by supplying them after a --. For example, if the database were changed to require a username, we could specify the username and password with:

$ sqoop job --exec myjob -- --username someuser -P
Enter password:
…

The exec action allows you to override arguments of the saved job by supplying them after a --. For example, if the database were changed to require a username, we could specify the username and password with:
$ sqoop job --exec myjob -- --username someuser -P
Enter password:
…

Common options:
Argument Description
--help Print usage instructions
--verbose Print more information while working
$ sqoop metastore (generic-args) (metastore-args)
$ sqoop-metastore (generic-args) (metastore-args)

Argument Description
--shutdown Shuts down a running metastore instance on the same machine.
Clients should connect to the metastore by specifying sqoop.metastore.client.autoconnect.url or --meta-connect with the value jdbc:hsqldb:hsql://:/sqoop. For example, jdbc:hsqldb:hsql://metaserver.example.com:16000/sqoop.

$ sqoop merge (generic-args) (merge-args)
$ sqoop-merge (generic-args) (merge-args)

Merge options:

Argument Description
--class-name Specify the name of the record-specific class to use during the merge job.
--jar-file Specify the name of the jar to load the record class from.
--merge-key
Specify the name of a column to use as the merge key.
--new-data Specify the path of the newer dataset.
--onto Specify the path of the older dataset.
--target-dir
Specify the target path for the output of the merge job. 

 sqoop merge --new-data newer --onto older --target-dir merged \
    --jar-file datatypes.jar --class-name Foo --merge-key id
$ sqoop codegen (generic-args) (codegen-args)
$ sqoop-codegen (generic-args) (codegen-args)
sqoop codegen --connect jdbc:mysql://db.example.com/corp \
    --table employees
$ sqoop create-hive-table (generic-args) (create-hive-table-args)
$ sqoop-create-hive-table (generic-args) (create-hive-table-args)
sqoop create-hive-table --connect jdbc:mysql://db.example.com/corp \
    --table employees --hive-table emps
$ sqoop eval (generic-args) (eval-args)
$ sqoop-eval (generic-args) (eval-args)

SQL evaluation arguments:

Argument Description
-e,--query Execute statement in SQL.


sqoop eval --connect jdbc:mysql://db.example.com/corp \
    --query "SELECT * FROM employees LIMIT 10"
Insert a row into the foo table:
$ sqoop eval --connect jdbc:mysql://db.example.com/corp \
    -e "INSERT INTO foo VALUES(42, 'bar')"


sqoop-list-databases
$ sqoop list-databases (generic-args) (list-databases-args)
$ sqoop-list-databases (generic-args) (list-databases-args) sqoop list-databases --connect jdbc:mysql://database.example.com/
information_schema
employees sqoop-list-tables$ sqoop list-tables (generic-args) (list-tables-args)
$ sqoop-list-tables (generic-args) (list-tables-args) $ sqoop list-tables --connect jdbc:mysql://database.example.com/corp
employees
payroll_checks
job_descriptions
office_supplies $ sqoop list-tables --connect jdbc:postgresql://localhost/corp  --username name -P -- --schema payrolldept
employees
expenses $ sqoop version
$ sqoop-version sqoop version
Sqoop {revnumber}
git commit id 46b3e06b79a8411320d77c984c3030db47dd1c22
Compiled by aaron@jargon on Mon May 17 13:43:22 PDT 2010


Supported Databases
Database version --direct support? connect string matches
HSQLDB 1.8.0+ No jdbc:hsqldb:*//
MySQL 5.0+ Yes jdbc:mysql://
Oracle 10.2.0+ No jdbc:oracle:*//
PostgreSQL 8.3+ Yes (import only) jdbc:postgresql://
CUBRID 9.2+ NO

$ sqoop import --table foo \
    --connect jdbc:mysql://db.example.com/someDb?zeroDateTimeBehavior=round Sqoop’s direct mode does not support imports of BLOB, CLOB, or LONGVARBINARY column

$ sqoop import -D oracle.sessionTimeZone=America/Los_Angeles \
    --connect jdbc:oracle:thin:@//db.example.com/foo --table bar





No comments:

Post a Comment

Python Challenges Program

Challenges program: program 1: #Input :ABAABBCA #Output: A4B3C1 str1="ABAABBCA" str2="" d={} for x in str1: d[x]=d...